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Informática, of the Departamento de Informática do Centro
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neiro. Departamento de Informática. IV. T́ıtulo.
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Abstract

Fontoura, Leonardo Lobo da Cunha da; Vidal, Thibaut (Advisor);
V.S. Poggi de Aragão, Marcus (Co-Advisor). On the Min
Distance Superset Problem. Rio de Janeiro, 2015. 48p.
MSc. Dissertation — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

The Partial Digest Problem, also known as the Turnpike Problem,

consists of building a set of points on the real line given their unlabeled

pairwise distances. A variant of this problem, named Min Distance Superset

Problem, deals with incomplete input in which distances may be missing.

The goal is to find a minimal set of points on the real line such that the

multiset of their pairwise distances is a superset of the input.

The main contributions of this work are two different mathematical

programming formulations for the Min Distance Superset Problem:

a quadratic programming formulation and an integer programming

formulation. We show how to apply direct computation methods for variable

bounds on top of a Lagrangian relaxation of the quadratic formulation. We

also introduce two approaches to solve the integer programming formulation,

both based on binary searches on the cardinality of an optimal solution.

One is based on a subset of decision variables, in an attempt to deal with a

simpler feasibility problem, and the other is based on distributing available

distances between possible points.

Keywords

Partial Digest Problem; Turnpike Problem; Restriction Site Mapping;

Mathematical Modeling ; Quadratic Optimization; Integer Optimization.
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Resumo

Fontoura, Leonardo Lobo da Cunha da; Vidal, Thibaut; V.S. Poggi
de Aragão, Marcus. Sobre o Problema de Superset Mı́nimo
de Distâncias. Rio de Janeiro, 2015. 48p. Dissertação de Mestrado
— Departamento de Informática, Pontif́ıcia Universidade Católica
do Rio de Janeiro.

O Partial Digest Problem (problema de digestão parcial), também

conhecido como o Turnpike Problem, consiste na construção de um conjunto

de pontos na reta real dadas as distâncias não designadas entre todos os

pares de pontos. Uma variante deste problema, chamada Min Distance

Superset Problem (problema de superset de distância mı́nimo), lida com

entradas incompletas em que algumas distâncias podem estar faltando. O

objetivo deste problema é encontrar um conjunto mı́nimo de pontos na reta

real, tal que as distâncias entre cada par de pontos contenham todas as

distâncias de entrada.

As principais contribuições deste trabalho são duas formulações de pro-

gramação matemática diferentes para o Min Distance Superset Problem:

uma formulação de programação quadrática e uma formulação de pro-

gramação inteira. Mostramos como aplicar um método de cálculo direto

de limites de valores de variáveis através de uma relaxação Lagrangeana da

formulação quadrática. Também introduzimos duas abordagens diferentes

para resolver a formulação inteira, ambas baseadas em buscas binárias na

cardinalidade de uma solução ótima. A primeira baseia-se num subconjunto

de variáveis de decisão, na tentativa de lidar com um problema de viabili-

dade mais simples, e o segundo é baseado na distribuição de distâncias entre

posśıveis pontos dispońıveis.

Palavras–chave

Partial Digest Problem; Turnpike Problem; Mapeamento de Śıtios

de Restrição; Modelagem Matemática; Otimização Quadrática; Otimização

Inteira.
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1

Introduction

Computing all pairwise distances from a set of n points is simple. The

reverse problem is far less trivial: reconstructing all sets of n numbers on a

line given its unordered set of
(

n

2

)

distances. This problem is more commonly

known as the partial digest problem (PDP). Alternatively, it is also known as

the turnpike problem (Dakic, 2000), where one is given the pairwise distances

of all cities along a highway and has to find their ordering along the road.

Despite considerable research efforts, it is still unknown if this problem has a

polynomial time algorithm or if it is NP-Complete (Rosenblatt and Seymour,

1982; Lemke and Werman, 1988; Skiena et al., 1990; Zhang, 1994; Dakic, 2000;

Daurat et al., 2002, 2005; Nadimi et al., 2011).

The partial digest problem seems to have first appeared relating to phase

retrieval problems in X-ray crystallography. Later on, it found an important

application in DNA sequencing. We choose to refer to it as the partial digest

problem, rather than the turnpike problem, because we will focus on a variant

that arises directly from its biological application.

A DNA molecule can be viewed as a string on an alphabet of nucleotides

{A, C, G, T}. A restriction enzyme is a chemical that cuts DNA at specific

sequence patterns of nucleotides, called restriction sites. A digestion experiment

is performed by allowing a restriction enzyme to digest several clones of DNA

molecule and then measuring the lengths of the resulting fragments, utilizing

a process called gel electrophoresis.

If a single restriction enzyme is allowed to completely digest a DNA

molecule, then the only information obtained are the distances between any

two consecutive restriction sites. Thus, any permutation of the restriction sites

is valid in regards to these fragments, as we cannot infer in which order the

sites lie. This is called a complete digestion.

If the same enzyme is only allowed to act for a very limited duration,

then all fragments between any two restriction sites are obtained. This is where

the partial digest problem arises, as now we need to obtain a set of points on

a line that generates these pairwise distances exactly, allowing us to find the

appropriate positions of known fragments, even without sequencing the whole

molecule.

Evidently, experiments and measurements are never perfect. In the case

of partial digest experiments, there exists four types of errors (Cieliebak et al.,
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Chapter 1. Introduction 9

2003):

1. Additional fragments: an enzyme might cut at a site that is similar,

but not identical to its restriction site. Contamination with unrelated

biological material may also happen. This results in additional distances

being added to the data.

2. Missing fragments: sometimes a particular restriction site will be left

uncut, then only one larger fragment occurs instead of two or more

fragments. Also, fragments can remain undetected if they are too small

or if their amount is insufficient.

3. Measurement errors: it is next to impossible to determine the exact length

of fragments using gel electrophoresis. While accuracies approaching

0.1% are feasible (Skiena et al., 1990), typical error ranges from 2% to

7% of the fragment length (Cieliebak et al., 2003).

4. Multiplicity detection: determining the multiplicity of a distance from

its spot in the gel is a non-trivial problem.

These issues tend to complicate the task of retrieving viable reconstruc-

tions of the molecule’s restriction sites and possible solutions have been ad-

dressed in the literature. Skiena, Lemke and Smith (Skiena et al., 1990) proves

that the partial digestion problem is strongly NP-complete if additive er-

ror bounds are assigned to each distance individually. Skiena and Sundaram

(Skiena and Sundaram, 1994) proposed a backtracking algorithm that can deal

with measurement errors and few missing fragments. This algorithm has ex-

pected running time polynomial in the number of distances, but exponential

worst case running time (Zhang, 1994). Several PDP variants were proven to

be NP-Hard (Cieliebak et al., 2003).

The second type of error is of particular interest to us. One simple

definition of this problem, given in (Cieliebak et al., 2003), is to find the

smallest set of points whose pairwise distances contains a given multiset.

Intuitively, this means that the objective is to reconstruct a valid set of points

that uses the least number of unknown distances. This problem was shown to

be NP-hard in (Cieliebak et al., 2003) via a reduction to a problem known

as Equal Subsets Sum (Woeginger and Yu, 1992). This problem will be the

main focus of this thesis and we will refer to it as the Min Distance Superset

Problem (MDSP).

A major challenge when dealing with this problem are the high number of

symmetrical feasible solutions. Not only there usually exists several solutions
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Chapter 1. Introduction 10

that are equivalent via translation and mirroring, but it is almost always pos-

sible to find similar solutions with the same cardinality either via permutation

of equivalent distances or changing the order in which points appear.

The contributions of this work are two different mathematical program-

ming formulations, a quadratic programming (QP) formulation and an integer

programming (IP) formulation. We show how to apply some of the results

found in (Fleischman, 2010) on top of a Lagrangian relaxation of the QP for-

mulation. We also introduce two approaches to solve the IP formulation, both

based on binary searches on the cardinality of an optimal solution. One is

based on a subset of decision variables, in an attempt do deal with simpler

feasibility problem, and the other is based on distributing distances between

possible points.

This work is organized in the following way. In chapter 2, we define both

the PDP and MDSP, showing some results for both problems, along with a

brief review of related works. In Chapter 3, a pseudo-polynomial quadratic

formulation for the MDSP is given with its linearization. We also show how

to approximate it via Lagrangian relaxation and how to extract additional

information about its variables. In Chapter 4, a polynomial integer formulation

is built and two ways to solve it are presented. In Chapter 5, we provide

experimental results and analysis of the proposed methods and a reasoning

behind chosen instances. Finally, a brief conclusion is made in Chapter 6.
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2

Partial Digest and Min Distance Superset

2.1

Partial Digest Problem

The problem of reconstructing points in a line, given the distances

between any two of them, is known as the Partial Digestion Problem. This

problem is closely related to the min distance superset problem, as the PDP is

a particular case of the MDSP, where no distances are missing. This chapter

will consist of a review of related works to both the PDP and MDSP, along

with a few results about the former.

Since several pairs of points may have the same distance between them,

the input is represented as a multiset. A multiset is a set that allows for the

repetition of elements. Subtracting an element from a multiset will remove

it only once, for example: {1, 1, 1, 3, 9, 12} − {1, 1, 3, 4, 5} = {1, 9, 12}. Curly

brackets will denote multisets unless noted otherwise. For the sake of brevity,

the multiset {q − p | p, q ∈ P, p < q} of pairwise distances of a set P will be

denoted as ∆P . With this in mind, the partial digest problem can be defined

as follows:

Definition 1 (PDP) Given a multiset D = {d1, . . . , dk} of k =
(

n

2

)

positive

integers, is there a set P = {p1, . . . , pn} of n points on a line such that

∆P ≡ D?

To illustrate the problem, letD = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17}

be a distance set, known as Bloom’s distance set (Skiena et al., 1990).

Two possible reconstructions are possible, P1 = {0, 1, 4, 10, 12, 17} and

P2 = {0, 1, 8, 11, 13, 17}, as can be seen in Figure 2.1, that is, ∆P1 ≡ ∆P2 ≡ D.

It is important to notice that the two solutions in Figure 2.1 are not

congruent, as there is no set of rigid motions on the real line that can turn

one solution into the other. This means that there is no a ∈ R such that

P1 = P2 + a = {p + a | p ∈ P2} or P1 = −P2 + a (defined analogously). As

congruent sets essentially represent the same reconstruction in the PDP, there

is a great interest in homometric sets. Two non-congruent sets X, Y are said

to be homometric if they generate the same distance multisets, ∆X ≡ ∆Y .

Rosenblatt and Seymour (Rosenblatt and Seymour, 1982) give necessary

and sufficient conditions for two sets to have the same distance multiset via

DBD
PUC-Rio - Certificação Digital Nº 1312380/CA



Chapter 2. Partial Digest and Min Distance Superset 12

2.0(a): P1 and ∆P1. 2.0(b): P2 and ∆P2.

polynomial factorization. Given D = {d1, . . . , dk}, where k =
(

n

2

)

, the distance

generating function of D is

Q(x) = n+
∑

d∈D

(xd + x−d) (2-1)

By factoring (2-1) over the ring of polynomials with integer coefficients, it is

possible to generate all homometric sets that have D as a distance multiset.

Later on, Lemke and Werman (Lemke and Werman, 1988) show that this

factorization can be done in pseudo-polynomial time depending on the largest

exponent of Q(X), which means that the PDP can be solved in pseudo-

polynomial time depending on maxd∈D d, the largest distance in D.

The maximum possible number of mutually homometric sets of n points,

denoted as H(n) is bounded by Skiena, Lemke and Smith in (Skiena et al.,

1990):

H(n) ≤
1

2
nn.12334827

which is valid for all values of n, and H(n) is a power of two. They claim that

this suggests that a strongly-polynomial algorithm for the PDP exists, as no

NP-complete problem is known with the property that the number of solutions

is 2o(n
o(1)).

In the same publication, Skiena et al. present a combinatorial aspect

of the partial digest problem by introducing a backtracking algorithm. This

algorithms relies on the fact that the distance multiset D of n points, P =

{p1 = 0 < p2 < · · · < pn}, can be represented in a triangular matrix or

pyramid. Let dij be the distance between the ith and jth points on a line. At

the bottom of this pyramid (Figure 2.1) are the distances between consecutive

points and the set of distances dij such that j − i = l are in the lth row of the

pyramid. Clearly, d1n is the largest distance in D, as it is the distance between

the two farthest points in any solution.

The algorithm works by repeatedly positioning the currently largest
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Chapter 2. Partial Digest and Min Distance Superset 13

2.0(c): Pyramid for P1. 2.0(d): Pyramid for P2.

Algorithm 1 Recursive pseudo-code for Skiena et al. backtracking algorithm.
Here, D is a multiset of distances, P is a set of points and dist(p, P ) returns
all distances from p to points in P .

1: function pdp init(D)
2: P = {0,max(D)}
3: pdp backtrack(D − {max(D)}, P )

4:

5: function pdp backtrack(D,P )
6: if D = ∅ then
7: output P
8: return
9: p = max(D)
10: if dist(p, P ) ⊆ D then
11: pdp backtrack(D − dist(p, P ), P ∪ {p})

12: p = max(P )−max(D)
13: if dist(p, P ) ⊆ D then
14: pdp backtrack(D − dist(p, P ), P ∪ {p})

remaining distance of D (Algorithm 1). Notice that this largest distance d

must always define a new point p, as it can only be either be the distance d1l

or drn in the pyramid, for some 1 < l, r < n. Suppose that d is not one of those,

but duv for some 1 < u < v < n. Then, one of the unpositioned distances dun

or d1v is larger than d, which is a contradiction. After choosing this new point

p, where p = 0 + d or p = d1n − d, it is necessary to check if all distances

between p and points in P are available to be used. If the chosen position isn’t

valid, the algorithm tries the other option for p. If both positions aren’t valid,

we backtrack one level up and try the other position for that level. This is

repeated until either a solution (or all solutions) are found or if the search is

exhausted.

In the worst case, Algorithm 1 has a complexity of O(2nn log n), where

n is the number of points in the solution instead of the number of distances

in the input, but the algorithm works well in practice. Zhang (Zhang, 1994)

created a class of PDP instances in which this algorithm takes exponential
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Chapter 2. Partial Digest and Min Distance Superset 14

time to find a single solution.

This procedure is equivalent to filling the left and right diagonals of the

pyramid and then attempting to fill any other position in the pyramid that

can be deduced, as both these diagonals directly define points in a solution,

since the positions of the first and last point are known beforehand.

In Dakic’s thesis (Dakic, 2000), a quadratic programming formulation

for the PDP is introduced. Let D′ = {d1 < d1 < · · · < dM} be the set of all

unique distances in D, and mult(d) be the multiplicity of distance d in D. By

considering only solutions P in which the least point is 0, it is clear that all

other points in P must be distances that are in D′, therefore P ⊆ D′ ∪ {0}.

By assigning a 0 − 1 variable xd for each d ∈ D′, the PDP can be formulated

as the following feasibility problem:
∑

0≤i<j≤M, s.t. j−i=d

xixj = mult(d) d ∈ D′

∑

d∈D′

xd = n

xi ∈ {0, 1} 0 ≤ i ≤ B

(2-2)

Unfortunately, testing for the feasibility of a quadratic 0−1 program such

as (2-2) is a NP-complete problem. To deal with this, Dakic relaxes program

(2-2) in a series of increasingly stronger semidefinite programs (SDP), which

can then be solved in polynomial time. Some classes of PDP instances were

shown to be solvable in polynomial time by these semidefinite relaxations,

such as instances with an unique solution, instances for which Algorithm 1

only backtracks a constant number of times and the instances proposed by

Zhang (Zhang, 1994).

A predictive backtracking algorithm was proposed by Nadimi, Fathabadi

and Gantjabesh in (Nadimi et al., 2011). This algorithm is based on a new

geometrical interpretation of the PDP. Its search tree is empirically much

smaller than the search tree of the backtracking algorithm proposed by Skiena

et al., being able to solve many large random instances without having to

backtrack at all. It seems to perform well for on the instances proposed by

Zhang (Zhang, 1994), however there is no proof that this algorithm can solve

the PDP efficiently.

Finally, the work of Daurat, Gérard and Dirat (Daurat et al., 2002) deals

with a variation of the PDP called the Chords Problem. In this problem, instead

of being given the pairwise distance of some points belonging to N
d, one is

given their pairwise vector differences. Clearly, the Chords Problem coincides

with the PDP when the dimension is 1. Two algorithms are proposed: a

variation of Skiena’s backtracking algorithm and a variation of the polynomial
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Chapter 2. Partial Digest and Min Distance Superset 15

factoring algorithm. The first is able to achieve better computational results by

postponing ambiguous choices until more information is obtained. It remains

unknown if this variation of the backtracking algorithm has exponential worst

case complexity, as Zhang’s results do not apply. The second algorithm exploits

polynomial symmetry in order to factor a distance generating function similar

to (2-1) over the polynomials with {0, 1} coefficients, solving both the Chords

Problem and the PDP in polynomial time. The claim that the PDP is solvable

in polynomial time was later retracted in (Daurat et al., 2005), as a different

encoding to the PDP problem was assumed, which resulted in an incorrect

analysis of the algorithm.

2.2

Min Distance Superset Problem

The Min Distance Superset Problem is a variation of the Partial Digest

Problem in which an unknown number of distances between the sampled points

are not available, but we still wish to know how the points were arranged. The

key assumption is that there can only be missing distances, so every integer in

the input was originally a distance between two points in the original structure.

This means that the distance multiset of the points we reconstruct must be a

superset of the original data. Thus, the Min Distance Superset Problem can

be defined as:

Definition 2 (MDSP) Given a multiset D = {d1, d2, . . . , dk} of k positive

integers, find the smallest set P ⊂ R such that D ⊆ ∆P .

Notice that it might be impossible to retrieve the original set of points

depending on which distances are missing. For example, consider the set of

points P0 = {0, 2, 5, 10} and its distance multiset ∆P0 = {2, 3, 5, 5, 8, 10}. If

the input for the MDSP isD = ∆P0−{3, 5, 5}, then there is no way of inferring

the existence of the point 5 without stronger assumptions about the original

structure of P0.

The MDSP is closely related to the PDP as an algorithm for the

former can also solve the latter. Any instance of the PDP that has a valid

reconstruction must also have a valid reconstruction under the MDSP, since it

can be seen as an MDSP instance with no distances missing. Given an instance

D of the PDP of cardinality k, then there is a reconstruction for D if, and only

if, the optimal solution for the MDSP instance D has size 1
2
+
√

1
4
+ 2k. Note

that 1
2
+
√

1
4
+ 2k is always a lower bound for the MDSP given an instance D

of cardinality k.
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Chapter 2. Partial Digest and Min Distance Superset 16

Unlike the PDP, there can be no tight general result on how many

optimal reconstructions can exist for an arbitrary MDSP instance consisting

of k distances. For example, if D = {1, 2, 4, . . . , 2k−1} then only solutions

with k points are possible and there are k! optimal solutions corresponding to

solutions of the form P =
{

0,
∑

d∈S1
d, . . . ,

∑

d∈Sk
d
}

, where ∅ ⊂ S1 ⊂ S2 ⊂

· · · ⊂ Sk ⊆ D. Therefore, nontrivial results regarding the number of optimal

solutions for the MDSP will require stronger assumptions regarding the input.

A feasible solution P of a MDSP instance D can be interpreted as an

undirected weighted graph G = (V,E). Points in a solution are mapped onto

vertices in the graph, so that for each point p ∈ P there is a vertex vp ∈ V .

Then, there must be exactly one edge with length d for each distance d ∈ D

and it must connect two vertices vp, vq such that ‖p− q‖ = d. This is similar

to the pyramid representation of the PDP. This concept will be the basis for

the integer programming formulation introduced in Chapter 4.

Notice that these graph representations are not unique, as there can be

many viable ways to place the edges. For instance, let D = {1, 2, 2, 4, 6, 10}

and P = {0, 1, 2, 4, 10}. It is simple to verify that at least two different

representations are possible: G1 = (V,E1) where

V = {v0, v1, v2, v4, v10}

and

E1 = {(v0,v1), (v0, v2), (v2, v4), (v0, v4), (v4, v10), (v0, v10))}

and G2 = (V,E2) with

E2 = {(v1,v2), (v0, v2), (v2, v4), (v0, v4), (v4, v10), (v0, v10))}

Furthermore, if there exists a graph representation of (P,D) that is dis-

connected, then we can find a smaller solution by contracting two appropriate

vertices, which must be chosen in a way that no other vertices overlaps. This

can be done by contracting the vertex with the lowest position in one of the

connected component of the graph and the vertex with the greatest position

in another connected component. The graph representation of (P,D) may be

disconnected if P is not an optimal solution for D.

The MDSP has more appeared recently in the literature than the PDP.

It was defined and proven to be NP-hard by Cieliebak et al. in (Cieliebak et

al., 2003) (a more thorough exposition can be found in (Cieliebak, 2003)). The

proof of NP-hardness is done by reducing a problem known as Equal Sums

Subsets (ESS) (3) to the MDSP. Note that the ESS doesn’t allow for repeated
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Chapter 2. Partial Digest and Min Distance Superset 17

numbers in its input, as each set in a solution can consist of one of the repeated

numbers.

Definition 3 (Equal Sum Subsets) Given a set S of k positive integers,

are there two non-empty disjoint sets X, Y ⊆ S such that
∑

x∈X x =
∑

y∈Y y?

The intuition behind the reduction is that if the two disjoint sets in the

ESS exists, then the graph representation of an optimal solution to the MDSP

with the same input must have a cycle. In this cycle, there are two disconnected

paths connecting a point of lower value to a point of greater value and the sum

of lengths in both paths must be equal, thus the edges in each path make

up each part of the ESS solution. Conversely, any instance of length k of the

MDSP that has a solution with cardinality less than k+1 must contain contain

a cycle. Again, the two paths in the cycle are a solution to the ESS.

This NP-hardness result is further strengthened by considering the t-Min

Distance Superset Problem (tMDSP), where t is some parameter specified as

a fixed function of ‖D‖:

Definition 4 (tMDSP) Given a multiset D = {d1, d2, . . . , dk} of k positive

integers, is there a set P ⊂ R such that D ⊆ ∆P and ‖P‖ ≤ t?

This variation of the MDSP is NP-hard (Cieliebak et al., 2003) for any

parameter t = f (‖D‖) = ‖D‖
1
2
+ǫ, where 0 < ǫ < 1

2
. It can be considered a

tight result, as any solution for the MDSP, tMDSP and the PDP must have

cardinality Ω(‖D‖
1
2 ).

2.3

Conclusions

This chapter defined both the partial digest problem and its variation

with missing distances, the min distance superset problem. As the PDP is

a well studied problem, a brief survey of the literature was provided, which

includes several algorithms and theoretical results. Despite the importance of

studying PDP variations that take experimental errors into account, there is

little research done in any of them. For the MDSP, this includes only proof of

its NP-hardness and proof of NP-hardness for the tMDSP.

Two major challenges when dealing with the MDSP are the lack of

any theoretical result, other than the NP-hardness proof, and the lack of

algorithms to deal with it. These kinds of result could help developing more

efficient algorithms for the MDSP. In the following chapters, we work towards

introducing integer and quadratic programming formulation for the MDSP,

along with some techniques that can be applied to each model. These models,
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in turn, have presented even greater challenges, as they can become unwieldy

as the input size increases.
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3

Methods for a Pseudo-Polynomial Formulation

Quadratically constrained quadratic programming (QCQP) play an im-

portant role as a modelling tool for many problems. The downside is that, while

linear programs can be solved efficiently, QCQP is NP-hard. Particularly, Da-

kic (Dakic, 2000) has used 0 − 1 QCQP to great effect when modelling the

partial digest problem. A quadratically constrained quadratic 0 − 1 program

is an optimization problem defined as:

min
x

1
2
xtQ0x+ ℓ0

tx

s.t. 1
2
xtQix+ ℓi

tx ≥ bi i = 1, . . . , k

xj ∈ {0, 1} j = 1, . . . , n

(3-1)

It is assumed that all quadratic forms Qi in (3-1) are symmetric. To

understand this assumption, notice that for any square matrix Q, xtQx =

xtQtx. Let Q′ = Q+Qt

2
. Then, xtQ′x = xtQx+xtQx

2
= xtQx, allowing all non-

symmetric matrix to be replaced by an equivalent symmetric matrices.

A feature of quadratic 0 − 1 program is the ability to directly model

logical and and or. An and between binary variables is multiplication and

the or, addition. For example, suppose an arbitrary QCP has a constraint

xy + zw ≥ 2. Such constraint can only ever be satisfied if all variables have a

value of 1, and fails when any of them is 0. This can be exploited in conjunction

with the notion of representing feasible solutions for the MDSP as graphs.

Recall that it is possible to find an initial feasible solution for any given

MDSP instance, simply by ”chaining” the input distances: if D = {d1, . . . , dk},

then P = {0, d1, d1+d2, . . . ,
∑

d∈D d} is a feasible solution of cardinality k+1.

Therefore, it is unnecessary to consider solutions that have a diameter greater

than B =
∑

d∈D d, as they will necessarily have cardinality greater than k+1.

Then, the MDSP can be formulated as:

min
x

∑B

i=0 xi

s.t.
∑

0≤i<j≤B, s.t. j−i=d

xixj ≥ mult(d) d ∈ D′

xi ∈ {0, 1} 0 ≤ i ≤ B

(3-2)

where D′ is the set of unique distances in an instance D and mult(d), d ∈ D

is the multiplicity of the value d, that is, how many times it appears in the

multiset of integers D. In this formulation, each variable xp represents a fixed
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integer on a line from 0 to B, having a value of 1 if, and only if, p is part of

a solution. A multiplication between two points xp and xp+d models an edge

of length d connecting points p and p+ d. For each distance d in D′ there is a

constraint that forces the distance multiset of a solution to use the distance d

at least as many times it appears in the input. Finally, the objective minimizes

the sum of points in the solution. The indices of the variables that have value

1 are a minimal set of points P such that D ⊆ ∆P .

Despite the simplicity of such formulation, there is a downside: the

number of variables is polynomial in the sum of the distances in the input.

This means that the size of this formulation is pseudo-polynomial, that is, its

size is exponential on the size of the binary representation of the input.

Algorithm 2 Determines which points can be part of a solution. Note that
C, T and P are sets, with their usual operations.

1: function valid points(distances)
2: C = {0}
3: for d ∈ distances do
4: T = {}
5: for p ∈ C do
6: T = T ∪ {p− d, p+ d}

7: C = C ∪ T
8: P = {p | p ∈ C, p ≥ 0}
9: return P

The number of variables can be reduced in two ways: dividing all integers

in D by their greatest common divisor or using the procedure shown in

algorithm 2. Note that the greatest common divisor method will only work

if no pair of numbers in D are relatively prime, as their greatest common

divisor will be 1. Algorithm 2 first calculates all possible linear combinations

of input distances, with the added constraint that the only coefficients allowed

are −1, 0 and 1. Then, it removes all combinations that are less than 0 and

returns the resulting set of points.

The idea is that no graph representation of an optimal solution can be

disconnected, therefore it is unnecessary to consider points that cannot be

reached from the 0 using only distances from D (going forward or backward).

This method can lead to a substantial decrease in the size of the formulation if

the distances are sparse enough, however it remains exponential on the length

of D, as up to 3n

2
variables can still exist.

For example, let D = {5, 8, 13, 22, 29}. If the variables are not filtered

with algorithm 2, then 78 variables are necessary, against 56 after applying it.

On the other hand, if D = {1, 1, 4, 15, 27, 40}, then the savings are minimal:

89 variables without filtering against 87. As shown by this example, Algorithm
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2 works better if the input is sparse, in the sense that smaller numbers cannot

be constructed by summation and subtraction of integers in the input.

3.1

Nonconvexity of the quadratic formulation

One thing to note is that available QCQP solvers, commercially or

otherwise, usually only solve QCQPs in which all quadratic constraints are

convex. This means that all Qi matrices in (3-1) must be definite positive,

which unfortunately isn’t always the case for the quadratic program (3-2). In

this case, there are two options to solve this problem: change the offending

matrices in such way that they become positive definite, or linearize the

formulation.

3.1.1

Convexification of offending constraints

It is always possible to force a constraint in a quadratic 0 − 1 program

to be convex. Observe the fact that if xi is a variable in such a program, then

x2
i = xi and x2

i − xi = 0. Let 1
2
xtQx + ℓtx ≥ k be a quadratic constraint and

η ∈ R
n. Then,

1

2
xtQx+ ℓtx

=
1

2
xtQx+ ℓtx+

n
∑

i=1

ηi(x
2
i − xi)

=
1

2
xt(Q+ 2Diag(η))x+ (ℓt + ηt)x

where Diag(η) is the square matrix with η in its diagonal and 0 everywhere else.

By increasing each ηi, it is possible to turn a non-convex constraint convex. It is

important to remark the this doesn’t alter the problem in any way if integrality

constraints are maintained. However, the solution of a linear relaxation may

vary with η. It is possible to optimize the value of η in order to get the best

possible optimal value from a linear relaxation in this case, by solving an

appropriate semidefinite program (Fleischman, 2010).

3.1.2

Applying the Reformulation-Linearization Technique

The other option is to apply the reformulation-linearization technique

(RLT). This family of techniques are usually used to produce tighter relax-

ation of nonconvex problems at the expense of a larger number of variables
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and constraints. In the case of a quadratic 0 − 1 program, it is possible to

linearize the problem while maintaining variable integrality constraints, ob-

taining an integer program. A thorough explanation of RLT along with several

applications in discrete and continuous nonconvex optimization can be found

in (Sherali and Adams, 2013), while a more concise explanation of the basic

technique can be found in (Anstreicher, 2009).

A simple application of RLT on a QCP is based on using products of

lower and upper bound linear constraints of the original xi variables to obtain

valid linear inequality constraints on new variables yij. In the case of (3-2), it

is unnecessary to create a new product variable yij for each pair xi and xj , as

only certain products will appear in the constraints.

Notice that (3-2) has integrality constraints on each xi, and contains

no linear constraints at all. However, these integrality constraints imply that

xi ≥ 0 and xi ≤ 1 are valid for all xi variables. Adding such constraints to

(3-2) doesn’t change the problem. Multiplying each constraint involving xi and

xj , if both of them appear in a quadratic constraint, and replacing the term

xixj by a new variable yij, the following constraints are obtained:

yij ≥ 0

yij − xi − xj ≥ −1

yij − xi ≤ 0

yij − xj ≤ 0

If integrality constraints for the xi are maintained, then yij can be 1 if,

and only if, the product xixj is also 1. However these constraints are also valid

in the case of a linear relaxation. Applying this to (3-2), the following IP is

obtained:

min
x

∑B

i=0 xi

s.t.
∑

0≤i<j≤B, s.t. j−i=d

yij ≥ mult(d) d ∈ D′

yij − xi − xj ≥ −1 0 ≤ i < j ≤ B

yij − xi ≤ 0 0 ≤ i < j ≤ B

yij − xj ≤ 0 0 ≤ i < j ≤ B

yij ≥ 0 0 ≤ i < j ≤ B

xi ∈ {0, 1} 0 ≤ i ≤ B

(3-3)

The advantage of using this new integer programming model is that there

is a wide range of commercial software than can be used to solve it, in contrast

to the less available quadratic constrained and nonlinear program solvers. On
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the other hand, implicit information contained in the original formulation is

lost, which could have been used to strength the model. The performance of

this model will be investigate in Chapter 5.

3.2

Lagrangian Relaxation

Lagrangian relaxation is a widely used approximation method for hard

optimization problems. It applies generally to all types of mathematical pro-

grams: convex, nonconvex, linear, nonlinear, continuous or discrete. Approx-

imations are used to bound the possible values of an optimal solution: the

tighter the bounds the better. A Lagrangian relaxation to (3-2) will be intro-

duced, seeking to achieve better approximations than just relaxing integrality

constraints in (3-2) and (3-3). It will also be useful in obtaining information

about individual variables by applying the methods described in Fleischman’s

work (Fleischman, 2010).

A lagrangian relaxation of a QCQP consists of attaching Lagrange

multipliers to a set of constraint and relaxing them into the objective function.

The resulting simpler problem will then be solved exactly. Consider the

following relaxation of formulation (3-2), where λ ≥ 0 is fixed:

min
x

∑B

i=0 xi +
∑

d∈D′ λd ·

(

mult(d)−
∑

0≤i<j≤B, s.t. j−i=d

xixj

)

s.t.
∑

0≤i<j≤B, s.t. j−i=d

xixj ≥ mult(d) d ∈ D′

xi ∈ {0, 1} 0 ≤ i ≤ B

(3-4)

The optimal value of formulation (3-4), for any λ ≥ 0, is clearly a lower

bound for (3-2), since

mult(dk)−
∑

0≤i<j≤B, s.t. j−i=d

xixj ≤ 0

Thus, it is possible to relax (3-4) again into

L(λ) = min
x

∑B

i=0 xi +
∑

d∈D′ λd ·

(

mult(d)−
∑

0≤i<j≤B, s.t. j−i=d

xixj

)

s.t. xi ∈ {0, 1} 0 ≤ i ≤ B

(3-5)

obtaining a lagrangian relaxation of (3-2) (for programs with more constraint

sets, there can exist an exponential number of different relaxations), which also

provides valid lower bounds for any λ ≥ 0, since removing constraints from a

minimization problem can only reduce the value of the optimal solution.

Choosing appropriate values for the lagrange multipliers is of key impor-

tance in terms of quality of lower bounds. Particularly, we are interested in
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finding the λ which gives the maximum possible lower bound. This involves

finding multipliers corresponding to:

max
λ≥0

L(λ)

which is called the lagrangian dual program of (3-2). Ideally, the optimal value

of this program is equal to the optimal value of the original problem, however

this seems to rarely happen. A typical way of solving this maximization

problem heuristically is via subgradient optimization. Subgradient optimization

is an iterative procedure to systematically generate lagrangean multipliers

from an initial set of multipliers. The basic algorithm for the subgradient

optimization of (3-5), considering an instance D of length n, is as follows:

1. Let U = n+1 be the current best upper bound for the original problem,

in this case, the trivial solution of chaining distances. Choose an initial

lagrangian multipliers λd ≥ 0, d ∈ D′, one multiplier for each unique

distance in D.

2. Solve (3-5) with the current set of λ to get a solution x̄i of value L.

3. Define the subgradients Gd, d ∈ D′ as the value of each relaxed

constraint:

Gd = mult(d)−
∑

0≤i<j≤B, s.t. j−i=d

x̄ix̄j

4. Define a step size S, with an arbitrarily defined parameter 0 < π ≤ 2,

as:

S = π
(U − L)
∑

d∈D′

(Gd)
2

5. Update each λd:

λd = max (0, λd + S ·Gd)

and if termination is not triggered, then go to step 2.

It is usual to terminate this procedure after a fixed number of iterations

or by reducing the value of π during the iteration above, terminating when π

is small enough.

Directly using the Lagrangian relaxation without acquiring better upper

bounds than the trivial one has provided low-quality lower bounds. Experi-

ments have shown that lower bounds provided by the subgradient optimization

are no better than the ones provided by simply relaxing integrality constraints

on formulation (3-3). However, the CPU time for the subgradient optimization
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seems to be lower than solving the linear relaxation based on computational

experiments.

3.3

Pruning technique

In (Fleischman, 2010), Fleischman investigates what information can be

derived from a convex unconstrained quadratic 0− 1 program when an upper

bound U is known. It turns out that it is possible to find the value of some

variables for any feasible solution with a value better than U , along with

lower bounds for the size of the sets containing all variables equal to 0 and 1.

Evidently, such method cannot work directly on (3-2), as it contains several

constraints. However, this method can also be applied when dealing with the

lagrangian relaxation (3-5).

Consider the following quadratic unconstrained 0− 1 problem:

min
x

xtQx+ ℓtx

s.t. xj ∈ {0, 1} j = 1, . . . , n
(3-6)

If an upper bound U to (3-6) is known, then the following problem

consisting of a linear objective function and a single quadratic constraint can

be solved:

Z = min
x

ctx

s.t. 1
2
xtQx+ ℓtx ≤ U

(3-7)

Since relaxing the integrality constraints of (3-6) can only yield lower

bounds, then Z must also be a lower bound of ctx̄, where x̄ is an optimal

solution to (3-6). Solving (3-7) with different vectors c can provide many

insights into x̄, since Z must be the same for any solutions of value less than

U , specially optimal solutions. Some of these are:

– If c = (0, . . . , 0, 1, 0, . . . , 0) = ei, the ith vector in the canonical basis, and

Z > 0, then xi > 0, which translates to xi = 1 in the optimal solution

because of the integrality constraints.

– Analogously, if c = −ei and Z > −1, then xi = 0. To see this, simply

substitute Z = −ei
tx in Z > −1 to arrive at xi < 1.

– If c = 1, the one vector, then Z is a lower bound for the cardinality of

the set {i | xi = 1}.

– Finally, if c = −1, then n+Z is a lower bound for the cardinality of the

set {i | xi = 0}.

This information can be used to simplify problems by eliminating vari-

ables and in branch and bound environments for pruning purposes. The major
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appeal of this method is that it can be performed in polynomial time in the

case which the matrix Q is positive definite. For the full proof on why this is

possible, see chapter 5 of (Fleischman, 2010).

To solve (3-7) for a given vector c, first calculate

µ =

√

2U + ℓtQ−1ℓ

ctQ−1c
(3-8)

and then substitute µ in
x∗ = Q−1(ℓ− µc) (3-9)

Computing the Cholesky decomposition of a positive definite real matrix

can be done in O(n3) and is an extremely efficient procedure in practice. After

computing the Cholesky decomposition of Q, it is possible to compute (3-

9) for each c in O(n2). Another interesting feature of this method is that

performing these computations for different c’s is an embarrassingly parallel

problem, allowing for nearly linear speed up on the number of processors. We

will call this the Pruning technique.

3.4

Applying the Pruning Technique to the Lagrangian Relaxation

We will show how to apply the pruning technique to the lagrangian

relaxation (3-5). Since the matrix in the objective function of (3-5) is not

always positive definite, it is necessary to modify the matrices in (3-2) before

applying the lagrangian relaxation. First, lets rewrite (3-5) in the following

way:

min
x

1
2
xt

(

∑

d∈D′

− λdQd

)

x+
B
∑

i=i

xi +
∑

d∈D′

λdmult(d)

s.t. xi ∈ {0, 1} 0 ≤ i ≤ B

(3-10)

where Qd is a matrix of dimensions (B + 1) × (B + 1) with both its ±dth

sub-diagonals equal to 1 and everything else equal to 0.

It suffices to notice that for each matrix −Qd, the matrix −Qd+η · I will

always be positive definite for a large enough η ∈ R. Empirically, it seems that

η = 2 is large enough for this purpose. Therefore, a positive weighted sum of

these matrices is also positive definite. By simply changing constraints

∑

j−i=d
0≤i<j≤B

xixj ≥ mult(d), d ∈ D′

of formulation (3-2) into the identical (due to variables being 0−1) constraints:
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∑

j−i=dk
0≤i<j≤B

xixj −
B
∑

i=0

(x2
i − xi) ≥ mult(d), d ∈ D′ (3-11)

The resulting lagrangian relaxation of (3-2) after the constraint modifi-

cation (3-11) is convex:

min
x

1
2
xt

[

∑

d∈D′

λd (−Qd + 2I)

]

x+ bλ
tx+ cλ

s.t. xi ∈ {0, 1} 0 ≤ i ≤ B

(3-12)

where bλ =
(

1−
∑

d∈D′ λd

)

· 1 is a vector and cλ =
∑

d∈D′ λdmult(d) is a

constant, both depending on the current lagrangian multipliers. Now, it is

possible to indirectly apply (3-7) to the original problem via the Lagrangian

relaxation (3-12):

Zλ = min
x

ctx

s.t. 1
2
xt

[

∑

d∈D′

λd (−Qd + 2I)

]

x+ bλ
tx ≤ U − cλ

(3-13)

Despite this being done on top of a relaxation of a Lagrangian relaxation,

the same information described in section 3.3 can be extracted from (3-13),

since Zλ ≤ ctx∗
λ ≤ ctx̄, where x∗

λ is the optimal solution to the Lagrangian

relaxation and x̄ is the optimal solution to the original problem. Problem (3-

13) can be solved either during or after the subgradient optimization, simply

by changing the current multipliers.

3.5

Conclusions

This chapter has introduced a quadratically constrained 0−1 formulation

(3-2) for the MDSP, which is pseudo-polynomial in the number of variables.

Since its constraints are not convex in general, it was shown how to apply

the reformulation-linearization technique to it, yielding an equivalent integer

0 − 1 program (3-3). After that, a Lagrangian relaxation (3-5) of (3-2) was

introduced and, finally, it was shown how to apply the pruning technique of

(Fleischman, 2010) to the original quadratic formulation via the Lagrange

representation.

The quadratic model (3-2) is remarkably simple and contains a lot

of implicit information due to variable multiplication. However, a pseudo-

polynomial number of variables makes this model a large-scale model even

for small instances. It remains an open question whether a similar quadratic

formulation for the MDSP with a polynomial number of variables can exist or

not. A few possible paths leading to this goal would be pruning points that are
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part of symmetrical solutions or identifying positions created from distances

that are not part of a larger path in the graph representation of any solution,

and thus, could have been placed anywhere. In order to deal with this, an

integer programming formulation with polynomial size will be presented in

the next chapter.
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4

Solving an Integer Formulation

The downside of the quadratic model presented in Chapter 3 is that we

are not to determine enough points that cannot be part of an optimal solution

and the necessity to represent the existence of each of those points as a binary

variable. In this chapter, we will show how to avoid having to represent each

possible point in a solution, using a integer programming formulation for the

MDSP. Two methods for solving this IP formulation using binary search on

the number of points in a optimal solution are also introduced.

Let D = {d1, . . . , dk} be a MDSP instance. Then, an optimal solution P

must have its cardinality n be between
⌈

1
2
+
√

1
4
+ 2k

⌉

≤ n ≤ k + 1, where

the lower bound is true because at least that many points are necessary to

generate k pairwise distances and the upper bound is achieved by chaining

distances, as explained in Chapter 3. We will now build the IP formulation

gradually.

Recall the graph representation of a feasible solution of the MDSP

presented in Section 2.2 and let G = (V,E) be such a graph for P . Note that

|V | has the same bounds as |P |. We introduce integral variables pi ≥ 0, pi ∈ Z,

0 ≤ i ≤ k, the coordinates of each vertex on the real line. As always, the first

vertex is fixed to the origin, and thus p0 = 0. Without loss of generality, we

can impose an ordering on the pi variables, along with making sure no vertices

can overlap, with the following constraint:

pi + 1 ≤ pi+1, 0 ≤ i < k (4-1)

The next step is to introduce variables that can represent distances. Since

any distance inD can be assigned between any two vertices in V , it is necessary

to introduce binary variables xd,i,j ∈ {0, 1}, for all d ∈ D′, 0 ≤ i < j ≤ k + 1,

where D′ is the set of all unique distances in D. Each xd,i,j represents if the

distance d has been used between vertices i and j. Evidently, only up to one

distance may be used between any pair of vertices, leading to the constraint:

∑

d∈D′

xd,i,j ≤ 1, 0 ≤ i < j ≤ k (4-2)

and each unique distance d ∈ D′ must be used exactly mult(d) times:

k−1
∑

i=0

k
∑

j=i+1

xd,i,j = mult(d), d ∈ D′ (4-3)
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If some variable xd,i,j is equal to 1, then the distance between pi and pj

has to be equal to d. This can be achieved through the constraints

pj ≤ pi + d+B(1− xd,i,j), 0 ≤ i < j ≤ k, d ∈ D′ (4-4)

pj ≥ pi + d · xd,i,j , 0 ≤ i < j ≤ k, d ∈ D′ (4-5)

where B ≥
∑

d∈D d is a number larger than the span of any solution with k+1

points or less. For any i, j, d, Constraint (4-4) forces pj to be at most pi + d if

xd,i,j is one, while not restraining pj position in respect to pi if xd,i,j is zero, as

B should be a large number. Likewise, constraint (4-5) forces pj to be at least

pi+d if xd,i,j is one and doesn’t restrain pj when xd,i,j is zero, since Constraint

(4-1) is tighter in this case. These two constraints ensure that the distance

between pi and pj is equal to d if xd,i,j is one, while not placing any additional

constraints when xd,i,j is zero.

It is possible to tighten Constraint (4-4) by changing the constant B into

a constant Bj−i, depending on how many distances can be placed between pi

and pj , that is equal to the sum of the largest j − i distances in D.

Note that the maximum number of vertices have been introduced in the

model so far, while it is clear that the optimal solution for many instances do

not require all these points. To solve this, we introduce a new set of binary

variables zi ∈ {0, 1}, 0 ≤ i ≤ k. Each variable zi is set to 1 if, and only if, the

vertex pi is part of the solution. Since p0 is fixed at the origin and it is always

in the solution, z0 can be fixed as 1. Then, all active vertices are clustered to

the lower indices, through the constraint set

zi ≥ zi+1, 0 ≤ i < k (4-6)

If xd,i,j = 1 for some d, then pi and pj must be part of the solution and

zi = zj = 1. This effect can be achieved by slightly modifying constraint (4-2)

into
∑

d∈D′

xd,i,j ≤ zj , 0 ≤ i < j ≤ k, (4-7)

allowing a distance to be used between pi and pj if, and only, if zj = 1.

Constraint (4-7) is sufficient to achieve the desired effect, since constraint (4-

6) will force zi = 1 as well.

Finally, the objective is to minimize the sum
∑k

i=0 zi, the number of

active vertices. Thus, we arrive at the following formulation for the MDSP:
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min
x,p,z

k
∑

i=0

zi

s.t.
∑

d∈D′

xd,i,j ≤ zj 0 ≤ i < j ≤ k

k−1
∑

i=0

k
∑

j=i+1

xd,i,j = mult(d) d ∈ D′

pj ≥ pi + d · xd,i,j 0 ≤ i ≤ k, d ∈ D′

pj ≤ pi + d+B(1− xd,i,j) 0 ≤ i ≤ k, d ∈ D′

pi + 1 ≤ pj 0 ≤ i < j ≤ k

zi ≥ zi+1 0 ≤ i < k

xd,i,j ∈ {0, 1} 0 ≤ i < j ≤ k, d ∈ D′

pi ∈ Z 0 ≤ i ≤ k

zi ∈ {0, 1} 0 ≤ i ≤ k

(4-8)
This integer programming formulation for the MDSP is clearly more

complex than the quadratic formulation (3-2). However, both the number

of variables and constraint present in (4-8) are bounded from above by

polynomials on the cardinality of the input multiset D, instead of depending

on the values which D contains. This means that the formulation is always the

same size for different inputs of same size, unlike formulation (3-2), which can

achieve very large scales even for small inputs, if they contain large values.

It is worth noting that while this formulation has a polynomial size on

the input, its size is still relatively large: model (4-8) contains

1

2
k(k + 1)‖D′‖ ≤

1

2
k(k + 1)‖D‖

variables of type xd,i,j, plus k + 1 variables for each type pi and zi, and it will

also contain a total of

k(k + 1) (1 + ‖D′‖) + k + ‖D′‖

constraints (not counting variable bounding constraints). In the worst case, if

all distances in D are unique, then model (4-8) will have a cubic quantity of

both variables and constraints. For example, if ‖D‖ = 20 and all distances are

unique, then there will be a total of 4200 variables and 8860 constraints, while

if ‖D‖ = 100, there will be a total of 505000 variables and 1020300 constraints.
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4.1

Methods for the Integer Formulation

The integer formulation presented is polynomially sized, but it will

quickly become a large scale problem as the size of the input increases. In

order to deal with this problem, we propose two methods of solving model

(4-8), both involving a binary search on the number of points in the optimal

solution and solving different variations of model (4-8) that completely removes

the decision variables zi.

The first method is based on trying to find increasingly smaller solutions

for the MDSP instance, until no smaller solution can be found. A solution for

the MDSP that uses up to t+1 points can be described as the following region:

∑

d∈D′

xd,i,j ≤ 1 0 ≤ i < j ≤ t

t−1
∑

i=0

t
∑

j=i+1

xd,i,j = mult(d) d ∈ D′

pj ≥ pi + d · xd,i,j 0 ≤ i ≤ t, d ∈ D′

pj ≤ pi + d+B(1− xd,i,j) 0 ≤ i ≤ t, d ∈ D′

pi + 1 ≤ pj 0 ≤ i < j ≤ t

xd,i,j ∈ {0, 1} 0 ≤ i < j ≤ t, d ∈ D′

pi ∈ Z 0 ≤ i ≤ t

(4-9)

where t is some arbitrary number less or equal to k. This formulation removes

the need of the zi variables, considering all points as part of the solution, even

points that use no distances whatsoever. Finding a feasible solution in (4-9)

means that it is possible to assign all distances in D as distances between

t+ 1 points in Z. If this region is empty, then there is no way to assign those

distances as the distances between t+ 1 integer points or less.

These observations lead to Algorithm 3, a binary search on the number

of points in the solution. Recall that the lower bound for any instance of size

k is
⌈

1
2
+
√

1
4
+ 2k

⌉

and a trivial upper bound of k+1. These bounds are the

endpoints of the binary search. The binary search iteratively solves (4-9) with

t equal to the middle of the current end points. If a feasible solution was found,

then the upper bound is set as the current mid, since now it is known that a

solution with that many points can exist, but it isn’t known if a solution with

less points exists yet. If no feasible solution is found, then the lower bound is

updated to mid+1, as there cannot exist any solution with less than mid+ 1

points. After the loop, it simply outputs the latest solution found. This is

sufficient, as the final iteration of the binary search already proved that any

solution with one less point cannot exist.
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Algorithm 3 Binary search algorithm based on models (4-9) and (4-10).

1: function bs-mdsp(D)
2: k = length(D)

3: lb =
⌈

1
2
+
√

1
4
+ 2k

⌉

4: ub = k + 1
5: while lb < ub do
6: mid = ⌊(lb+ ub)/2⌋
7: solve (4-9) or (4-10) for D with t = mid
8: if a feasible MDSP solution was found then
9: save the solution
10: ub = mid
11: else
12: lb = mid + 1

13: output the latest solution found

Model (4-9) can be further reduced into a formulation that relies on

distributing as many distances as possible among a fixed number of points,

instead of checking if a region is empty or not. Such a model can be described

as follows:

max
x,p

∑

d∈D

t−1
∑

i=0

t
∑

j=i+1

xd,i,j

s.t.
∑

d∈D′

xd,i,j ≤ 1 0 ≤ i < j ≤ t

t−1
∑

i=0

t
∑

j=i+1

xd,i,j ≤ mult(d) d ∈ D′

pj ≥ pi + d · xd,i,j 0 ≤ i ≤ t, d ∈ D′

pj ≤ pi + d+B(1− xd,i,j) 0 ≤ i ≤ t, d ∈ D′

pi + 1 ≤ pj 0 ≤ i < j ≤ t

xd,i,j ∈ {0, 1} 0 ≤ i < j ≤ t, d ∈ D′

pi ∈ Z 0 ≤ i ≤ t

(4-10)
In this formulation, the constraints dealing with pi variables remains the

same. The key difference is that constraint (4-3) is modified, not requiring all

distances to be used. The objective of this model is to maximize the number

of distances that can be distributed among t+ 1 points.

This model can be utilized with Algorithm 3, by noting that finding a

feasible solution for the MDSP is equivalent to finding an optimal solution to

Model (4-10) with a value equal to the size of the input. If the cardinality of

the input is k and the optimal solution of (4-10) is less than k, then we can

conclude that it is impossible to distribute that many distances among t + 1
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points. Otherwise, if the value of (4-10) is k (notice that it can’t be higher

due to the second set of constraint), then the set of variables pi is a feasible

solution for the MDSP, but there might be a smaller solution. This leads to a

binary search based algorithm, which is also described by Algorithm 3.

Algorithm 3 can work with both models presented in this section. The

major difference is that model (4-10) will never be infeasible, as setting all

xd,i,j to zero and all pi = i is always a feasible solution. Therefore, the ub is

set to mid only if the optimal solution of the current model has value k and a

smaller solution needs to be found or proven to be nonexistent. If the optimal

solution is value is less than k, then lb is set to mid + 1. This goes on until a

solution is proven to be optimal, when lb > ub, finally outputting it.

4.2

Conclusions

This chapter has introduced a polynomially sized IP model for the MDSP.

While this is a major improvement over the quadratic model with pseudo-

polynomial size, Model (4-8) can still achieve large proportions quickly, as its

size increases with complexity O(k3). To deal with this, two simpler models

were also introduced: Models (4-9) and (4-10) are built assuming that the

optimal solution will have a certain number of points. Then, for both of these

models, it is necessary to perform a binary search on the quantity of points an

optimal solution for the MDSP can have, trading some model complexity for

solving these models Θ (log k) times.

Some problems we have identified include:

– How well does a branch and bound approach works with model (4-8)?

Can we find good cuts or other approaches to solve it faster?

– Symmetry seems to play a large role on the difficulty of solving all these

models. Can these symmetries be broken?

– Heuristically identifying better lower and upper bounds for a given

MDSP instance could dramatically improve the efficiency of Algorithm

3 using Models (4-9) and (4-10).
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5

Computational Experiments and Analysis

In this chapter, we will discuss all computational experiments regard-

ing Chapters 3 and 4. All algorithms described in this chapter have been

implemented in Python 3.4. All integer and quadratic programming models

are solved using Gurobi 6 Python’s API, with default settings. The Numpy

Python library, version 1.9.2, was used for all linear algebra computations. All

experiments ran in a server with an Intel i7-3960X 3.3GHz, running Windows

7 64-bits with 64 GB of RAM.

For all experiments that utilizes Gurobi, running with default settings

means that up to six threads were used when solving mathematical programs.

Python was chosen as the implementation language for its rapid prototyping,

specially since most computation time was going to be spent solving models

with Gurobi.

Two different experiments will be presented in this chapter. The first

experiment consists in testing the direct computation of variable bounds

for Model (3-2) as described in Section 3.4. The second experiment is the

comparison of the following solution methods for the MDSP: the linearized

quadratic model (3-3), the integer programming model (4-8), Algorithm 3 using

Model (4-9) and Algorithm 3 using Model (4-10).

5.1

Instances

Four different types of instances were randomly generated to conduct

these tests. Most of the instances are generated by creating a set of points in

a line (with a maximum distance between consecutive points), calculating all

pairwise distances and then making appropriate modifications. Instance sizes

were chosen in such a way to have easy, medium and hard instances. Easy

instances have approximately 10 distances, medium instances have approxi-

mately 50 distances and hard instances have approximately 110 distances.

A total of 105 instances were generated to be used among all tests. Each

instance was named following the convention type-constants-identifier, where

the constants are the numbers used to generate the instance, separated by

dashes, and the identifier is a 5 letter random string.

The instances are defined as follows:
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– Full instances: these are PDP instances, that is, instances of size k =
n(n−1)

2
for some n ∈ N, with optimal solution P of cardinality n. They

are complete instances, in the sense that no distances are missing. These

instances were generated by sampling n− 1 integers between 1 and m as

the distances between consecutive points on the line, and calculating all

pairwise distances. Five of these instances were generated for each pair

between n = 5, 10, 15 and m = 15, 30, for a total of 30 instances. These

instances are named following the pattern ”full-n-m-identifier”.

– Missing distance instances: these are MDSP instances which are not PDP

instances, that is, instances of size between k1 =
n(n−1)

2
and k2 =

n(n+1)
2

,

with optimal solution P of cardinality greater than n. They are generated

by randomly removing an appropriate number of distances from a Full

instance generated from n + 1 points. Given n, the number of distances

to be removed is calculated as l = k2 + (k1 + k2)/2, totalling a size of
n(n+1)

2
− l. Five of these instances were generated for each pair between

n = 5, 10, 16 and m = 15, 30 (for the underlying Full instance), for a

total of 30 instances. These instances are named following the pattern

”miss-(n+ 1)-m-l-identifier”.

– Joint instances: these are the concatenation of two Full instances gener-

ated from pair of integers (n1, m1) and (n2, m2). There is no guarantee

on how many points the solution will have. Three of these instances

were generated for each pair between (n1, n2) = (5, 5), (10, 5), (15, 5) and

(m1, m2) = (15, 15), (30, 30), for a total of 18 instances. These instances

are named following the pattern ”joint-n1-m1-n2-m2-identifier”.

– Random instances: these are instances consisting of k integers uniformly

sampled in [1, d]. The distances d were chosen as approximations to the

maximum distances found in the previous distances. Three instances were

generated for each pair between k = 10, 50, 112 and d = 75, 110, 200 for

a total of 27 instances. These instances are named following the pattern

”drand-k-d-identifier”.

5.2

Quadratic Formulation and Pruning Technique

The first computational experiment aimed at investigating the viability of

the approach based on quadratic programming and variable pruning, described

in Section 3.4.

The following conventions have been used for the tests:

– The pruning technique for unconstrained quadratic programs was applied

to each instance with the method explained in Section 3.4. Notice that
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variables were not filtered out using Algorithm 2 before applying either

the lagrangian relaxation or the pruning technique, as it did not filter

many variables for the generated instances.

– The subgradient optimization was initialized with all lagrangian multi-

pliers equal to zero and the step factor was initialized as π = 2, being

halved every 50 successful iterations of the subgradient optimization. The

pruning technique used the trivial upper bound of each instance for its

calculations.

– For each test, the subgradient optimization of the lagrangian relaxation

was given a time limit of 60 seconds, triggering termination only when

time ran out. The pruning technique was given another 60 seconds to

run before the method was terminated.

Table 5.1 shows the results from this experiments for the 35 instances

that did not time out. The pruning technique did not terminate for 70 out

of 105 instances. This happened because the number of variables in Model

(3-2) is equal to the sum of the distances in each instance, and thus, pseudo-

polynomial on the size of the instance. For example, one of the largest random

instances, containing 112 distances, leads to 11500 variables, which means that

the quadratic form in the pruning technique is a 11500× 11500 matrix.

As it can be seen, the results were negative, in the sense that no variable

fixing information could be derived on these instances. Notice that column lb1,

which is a lower bound to Model (3-2), does not reach the trivial lower bound

of
⌈

1
2
+
√

1
4
+ 2k

⌉

. No information about which variables must always be set

to 0 or to 1 was acquired.

Applying the pruning technique of (Fleischman, 2010) through the

indirection of a lagrangian relaxation did not provide, during our experiments,

any useful information about the MDSP. However, it is possible that this

technique may still yield results for the MDSP on different (possibly smaller)

instances or by proposing an improved version of Algorithm 2.

Several techniques based on the quadratic programming formulation

were not successful. As it can be seen in the next section, the linearization-

reformulation of the quadratic programming formulation also presents a low

performance. Because of this, it was necessary to reconsider our mathemat-

ical models, leading to the integer programming formulations introduced in

Chapter 4.
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Table 5.1: Pruning technique results for instances that didn’t time out. In this
table, LB0 and LB1 are lower bounds for the size of the sets {xi | xi = 0} and
{xi | xi = 1}, respectively, while Set0 and Set1 are the number of xi variables
that were determined to be equal to 0 and 1, respectively.

name LB0 LB1 Set0 Set1

drand-10-110-IAeNk -969.74 -21.34 0 0
drand-10-110-RVUNe -2342.33 -6.66 0 0
drand-10-110-xGWpl -730.18 -24.96 0 0
drand-10-200-NRczF -2797.45 -16.65 0 0
drand-10-200-RADUL -2865.93 -16.88 0 0
drand-10-200-uJUJU -1021.58 -16.35 0 0
drand-10-75-FrySA -904.18 -26.88 0 0
drand-10-75-LMchp -2376.37 -7.96 0 0
drand-10-75-duABx -5154.08 -3.05 0 0
full-5-15-Bmagw -3470.59 -3.36 0 0
full-5-15-DXuOB -3003.78 -1.8 0 0
full-5-15-IGyKD -115.21 -39.22 0 0
full-5-15-YPTpx -75.24 -37.67 0 0
full-5-15-gzXps -1843.82 -1.5 0 0
full-5-30-HemAR -1631.46 -9.17 0 0
full-5-30-JXNyw -667.81 -26.42 0 0
full-5-30-RgeCt -3018.98 -8.84 0 0
full-5-30-jNdcc -348.78 -31.39 0 0
full-5-30-mmVNa -1866.51 -10.34 0 0
joint-5-15-5-15-JCqgc -26066.87 -5.78 0 0
joint-5-15-5-15-cRuVK -9790.06 -29.92 0 0
joint-5-15-5-15-kpzbA -5848.87 -11.45 0 0
joint-5-30-5-30-JbgQE -14163.74 -19.3 0 0
joint-5-30-5-30-UdbEW -3213.40 -67.1 0 0
joint-5-30-5-30-yxDLl -18605.39 -20.17 0 0
miss-6-15-2-CQUqA -634.73 -50.41 0 0
miss-6-15-2-Jxirs -339.47 -65.17 0 0
miss-6-15-2-PRmUu -2078.43 -13.58 0 0
miss-6-15-2-PZdYO -292.28 -55.64 0 0
miss-6-15-2-foYyI -259.19 -62.36 0 0
miss-6-30-2-UiSdF -1285.40 -34.12 0 0
miss-6-30-2-epXBf -3935.16 -16.7 0 0
miss-6-30-2-fwQWS -5544.22 -12.12 0 0
miss-6-30-2-mGmmu -868.66 -42.11 0 0
miss-6-30-2-wBcAX -4653.33 -10.36 0 0
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5.3

Comparison of MDSP methods

The goal of this section is to compare different mathematical program-

ming formulations for the MDSP, based on their ability to solve the pro-

posed instances to completion. The MDSP mathematical programming for-

mulations compared in this computational experiment are: the linearization-

reformulation of the quadratic programming Model (3-3) with filtered vari-

ables, the integer programming Model (4-8), Algorithm 3 using Model (4-9)

and Algorithm 3 using Model (4-10). For the sake of brevity, these methods

will be called RLT, IP, FEAS and DISTMAX, respectively. Each method was

given 3600 seconds to run each instance a single time.

All methods, except FEAS, were modified in order to utilize the informa-

tion about lower and upper bounds that can be calculated before hand in the

form of lower and upper bound constraints. This means that for each method,

two constraints were added: a constraint such that the objective value must

be equal or greater than the known lower bound and a constraint such that

the objective value must be equal or lesser than the known upper bound.

The results for each type of instance can be seen in Tables 5.2, 5.3, 5.4 and

5.5. Note that these tables do not total 105 instances, but rather 95 instances.

This is due to an undiagnosed and unresolved issue regarding Gurobi, in which

root nodes would stall for hours, ignoring any time limits as they are checked

only when a node is closed. Therefore, instances for which all methods stalled

were discarded, while instances in which only some methods stalled have entries

with dashes. Entries have a value of ”OOM” if an out of memory exception

was raised while executing it.

As expected, the linearization-reformulation of the quadratic program-

ming model (3-3) (named RLT in the tables), is the method with the worst

performance among the four proposed methods. Out of the 95 instances, it only

managed to close 14 instances, 10 belonging to the full instance type and 4

belonging to the missing distance instance type. Out of these solved instances,

its fastest solution time was 1.23 seconds for the instance ”full-5-15-DXuOB”,

which took the next slowest method, IP, only 0.13 seconds to solve.

Even with lower and upper bound constraints, the RLT method fails to

close other easy instances in which the other methods succeeded. For many

larger instances, it even fails to find lower and upper bounds. It is also the

only method to have raised out of memory exceptions, on a machine with 64

GB of RAM.

The integer programming Model (4-8) is in all cases a massive improve-

ment over the RLT method, presenting speed-ups of CPU time ranging from 9
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to 898 times for instances which both methods succeeded in finding an optimal

solution and managing to close 32 out of the 35 easiest instances. This method

could be quickly improved by providing an initial trivial solution to the integer

model, as some of the larger instances fail to report an upper bound, meaning

that it failed to find any feasible solution.

Figure 5.1: Time comparison for instances that IP, FEAS and DISTMAX
solved. Note that the bars always follow this order. Each entry in the horizontal
axis is a different instance, denoted by its unique identifier. The vertical axis
measures the CPU run time in seconds.

5.1(a): Full instances. 5.1(b): Missing distance instances.

5.1(c): Joint instances. 5.1(d): Random distance instances.

The methods based on binary search, FEAS and DISTMAX, have shown

the best results overall, in terms of number of instances solved, CPU time for

those instances and gap size for unsolved instances. Figure 5.3 shows a chart

for each instance type, comparing the CPU time for all instances which IP,

FEAS and DISTMAX solved. As it can be seen in Figure 5.3 and Tables 5.2,

5.3, 5.4 and 5.5, the IP formulation was consistently beat in CPU time by at

least one of both FEAS and DISTMAX.

Finally, the FEAS method beats the DISTMAX method in all categories,

except number of instances solved, as DISTMAX solved 34 instances and FEAS

solved 33. The first method has shown better CPU time in 22 of the instances,

while DISMAX showed better CPU time in 12 instances. The same occurs

with the quality of upper bounds achieved: FEAS found better upper bound

17 times, while DISTMAX found the best upper bound 8 times, across all

instances.

The generated instances have proven to be harder to solve than expected,
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as no algorithm succeeded in solving more than 35 out of 105 proposed in-

stances. It’s also interesting to note these methods often found different

solutions to the instances. For example, consider the instance ”drand-10-

75-duABx”, with D = {16, 31, 40, 57, 57, 61, 65, 69, 69, 75}. The IP method

found the optimal solution PIP = {0, 4, 12, 16, 69, 73, 113, 144}, the FEAS

method found the optimal solution PFEAS = {0, 6, 14, 18, 31, 71, 75, 87},

the DISTMAX method found the optimal solution PDISTMAX =

{0, 2, 40, 59, 63, 71, 75, 128} and the RLT method found the non-optimal

solution PRLT = {0, 151, 208, 265, 273, 297, 303, 313, 334, 372}.

5.4

Conclusions

Two different computational experiments were presented in this chapter.

The first experiment, consisting of applying the pruning technique to the

lagrangian relaxation of the quadratic programming method, failed to provide

new information about the instances. This suggests that applying the pruning

technique through a layer of indirection might not provide quality results

overall. However, this technique might still work if Algorithm 2, or some other

algorithm with the same purpose, is improved.

The second experiment consisted of comparing the linearization-

reformulation of the quadratic programming Model (3-3) with filtered vari-

ables, the integer programming Model (4-8), Algorithm 3 using Model (4-9)

and Algorithm 3 using Model (4-10). The first model does not show promising

results, corroborating our expectations, as it has a pseudo-polynomial size on

the size of the input. The second model proved to be a major improvement

over the quadratic model, performing better in all metrics. Finally, the binary

search based methods have shown the best results, solving more instances,

achieving better times for instances that integer formulation solved and solv-

ing more instances, with the method based on Model (4-9) showing the best

overall results.
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Table 5.2: Results for methods RLT, IP, FEAS and DISTMAX, when applied to full instances. Column run time is the CPU time in
seconds and columns lb and ub are the reported lower and upper bounds.

RLT IP FEAS DISTMAX
name run time lb ub run time lb ub run time lb ub run time lb ub
full-5-15-Bmagw 3.67 5 5 0.25 5 5 0.15 5 5 0.14 5 5
full-5-15-DXuOB 1.23 5 5 0.13 5 5 0.10 5 5 0.10 5 5
full-5-15-IGyKD 45.46 5 5 0.15 5 5 0.17 5 5 0.22 5 5
full-5-15-YPTpx 5.04 5 5 0.31 5 5 0.16 5 5 0.20 5 5
full-5-15-gzXps 10.93 5 5 0.53 5 5 0.13 5 5 0.21 5 5
full-5-30-HemAR 6.73 5 5 0.16 5 5 0.14 5 5 0.13 5 5
full-5-30-JXNyw 77.39 5 5 0.62 5 5 0.16 5 5 0.17 5 5
full-5-30-RgeCt 18.45 5 5 0.27 5 5 0.14 5 5 0.15 5 5
full-5-30-jNdcc 133.68 5 5 0.15 5 5 0.15 5 5 0.22 5 5
full-5-30-mmVNa 9.95 5 5 0.26 5 5 0.14 5 5 0.22 5 5
full-10-15-NTugs 3600.00 10 23 3600.00 10 41 3600.00 10 18 3599.79 10 18
full-10-15-XvOOt 3600.00 10 25 3600.00 10 44 3599.79 10 18 3600.00 10 18
full-10-15-ZFfzV 3600.00 10 17 3600.00 10 19 3599.78 10 13 3600.00 10 13
full-10-15-cJWZy 3600.00 10 23 3600.00 10 19 3599.79 10 13 3599.81 10 18
full-10-15-zCRcz 3600.00 10 20 3600.00 10 33 3599.91 10 13 3600.00 10 18
full-10-30-EmIgJ 3600.00 10 22 3600.00 10 40 3600.00 10 18 3600.00 10 18
full-10-30-KPjnZ 3600.00 1 +∞ 3600.00 10 44 3600.00 10 18 3600.00 10 18
full-10-30-KyYWc 3600.00 −∞ 22 3600.00 10 36 3599.84 10 18 3599.78 10 18
full-10-30-eCmoy 3600.00 1 +∞ 3600.00 10 43 3600.00 10 18 3600.00 10 18
full-10-30-mvMQz 3600.00 −∞ 23 3600.00 10 44 3600.00 10 18 3600.00 10 28
full-15-15-EVTNs 3600.00 −∞ 28 3600.00 15 +∞ 3600.00 15 37 3600.00 15 25
full-15-15-adhAt 3600.00 −∞ 28 3600.00 15 +∞ 3600.00 15 25 3600.00 15 37
full-15-15-jdZur 3600.00 −∞ 32 3600.00 15 +∞ 3600.00 15 37 3600.00 15 37
full-15-15-sHNZQ 3600.00 1 +∞ 3600.00 15 +∞ 3600.00 15 37 3600.00 15 37
full-15-15-yipTk OOM OOM OOM 3600.00 15 +∞ 3599.89 15 37 3600.00 15 60
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Table 5.3: Results for methods RLT, IP, FEAS and DISTMAX, when applied to missing distance instances. Column run time is the CPU
time in seconds and columns lb and ub are the reported lower and upper bounds.

RLT IP FEAS DISTMAX
name run time lb ub run time lb ub run time lb ub run time lb ub
miss-6-15-2-CQUqA 3600.00 6 7 1.32 6 6 0.49 6 6 0.94 6 6
miss-6-15-2-Jxirs 3600.00 6 7 2.03 6 6 0.99 6 6 1.06 6 6
miss-6-15-2-PRmUu 30.35 6 6 0.68 6 6 0.49 6 6 0.89 6 6
miss-6-15-2-PZdYO 3600.00 6 7 1.63 6 6 0.90 6 6 0.45 6 6
miss-6-15-2-foYyI 425.49 6 6 1.80 6 6 1.06 6 6 1.15 6 6
miss-6-30-2-UiSdF 3600.00 6 7 1.35 6 6 0.69 6 6 1.53 6 6
miss-6-30-2-epXBf 771 6 6 1.22 6 6 0.61 6 6 0.25 6 6
miss-6-30-2-fwQWS 3600.00 6 7 1.39 6 6 0.28 6 6 0.28 6 6
miss-6-30-2-mGmmu 3600.00 6 7 2.03 6 6 0.38 6 6 0.62 6 6
miss-6-30-2-wBcAX 230.23 6 6 1.47 6 6 0.37 6 6 3.47 6 6
miss-11-15-5-VDdhV 3600.00 11 23 3600.00 11 51 3600.00 11 20 3600.00 11 20
miss-11-15-5-awYaT 3600.00 1 +∞ 3600.00 11 51 3600.00 11 20 3600.00 11 20
miss-11-15-5-bERIo 3600.00 11 23 3600.00 11 50 3600.00 11 20 3599.82 11 20
miss-11-15-5-dmzVR 3600.00 11 20 3600.00 11 49 3600.00 11 15 3599.83 11 20
miss-11-15-5-yVhpG 3600.00 1 +∞ 3600.00 11 51 3599.95 11 15 3600.00 11 15
miss-11-30-5-BgZoM 3600.00 −∞ +∞ 3600.00 11 50 3599.86 11 20 3600.00 11 31
miss-11-30-5-UimPG 3600.00 1 +∞ 3600.00 11 46 3599.97 11 20 3600.00 11 20
miss-11-30-5-nMlvm 3600.00 −∞ 24 3600.00 11 +∞ 3600.00 11 20 3600.00 11 31
miss-11-30-5-pYCsc 3600.00 1 +∞ 3600.00 11 51 3600.00 11 20 3600.00 11 20
miss-11-30-5-qsAHF 3600.00 1 +∞ 3600.00 11 49 3600.00 11 20 3600.00 11 20
miss-17-15-8-FYRet 3600.00 −∞ +∞ 3600.00 17 +∞ 3600.00 17 44 3600.00 17 129
miss-17-15-8-JroTc 3600.00 −∞ +∞ 3600.00 17 +∞ 3600.00 17 129 3600.00 17 129
miss-17-15-8-qzzLS 3600.00 −∞ +∞ 3600.00 17 +∞ 3600.00 17 129 3600.00 17 129
miss-17-15-8-vRtHH 3600.00 −∞ +∞ 3600.00 17 +∞ 3600.00 17 44 3600.00 17 129
miss-17-15-8-zcQEk 3600.00 −∞ +∞ 3600.00 17 +∞ 3600.00 17 129 3600.00 17 44
miss-17-30-8-FXPyU OOM OOM OOM 3600.00 17 +∞ 3600.00 17 129 3600.00 17 73
miss-17-30-8-dtaZd OOM OOM OOM 3600.00 17 +∞ 3600.00 17 129 3600.00 17 129
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Table 5.4: Results for methods RLT, IP, FEAS and DISTMAX, when applied to joint instances. Column run time is the CPU time in
seconds and columns lb and ub are the reported lower and upper bounds.

RLT IP FEAS DISTMAX
name run time lb ub run time lb ub run time lb ub run time lb ub
joint-5-15-5-15-JCqgc 3600.00 7 10 3600.00 7 9 976.78 9 9 917.82 9 9
joint-5-15-5-15-cRuVK 3600.00 7 10 1630.22 8 8 60.95 8 8 330.54 8 8
joint-5-15-5-15-kpzbA 3600.00 7 9 1041.94 8 8 10.37 8 8 88.19 8 8
joint-5-30-5-30-JbgQE 3600.00 7 12 3599.86 7 9 3600.00 7 10 3600.00 7 10
joint-5-30-5-30-UdbEW 3600.00 7 11 873.44 8 8 82.75 8 8 3018.05 8 8
joint-5-30-5-30-yxDLl 3600.00 7 11 3599.89 7 9 3600.00 7 10 1849.37 9 9
joint-10-15-5-15-ERzSf 3600.00 −∞ 22 3600.00 11 53 3600.00 11 21 3600.00 11 21
joint-10-15-5-15-VDLUB 3600.00 11 23 3600.00 11 36 3600.00 11 15 3600.00 11 21
joint-10-15-5-15-vxEov 3600.00 11 27 3600.00 11 29 3599.80 11 15 3600.00 11 21
joint-10-30-5-30-CrgyC 3600.00 −∞ 25 3600.00 11 37 3600.00 11 21 3599.85 11 21
joint-10-30-5-30-EAlFt 3600.00 1 +∞ 3600.00 11 54 3600.00 11 21 3600.00 11 21
joint-10-30-5-30-rpeSd 3600.00 1 +∞ 3600.00 11 53 3600.00 11 21 3600.00 11 21
joint-15-15-5-15-LDaWI 3600.00 −∞ +∞ 3600.00 16 +∞ 3600.00 16 116 3600.00 16 40
joint-15-15-5-15-WwbAA 3600.00 −∞ 32 3600.00 16 +∞ 3600.00 16 116 3600.00 16 40
joint-15-15-5-15-iQFaV 3600.00 −∞ +∞ 3600.00 16 +∞ 3600.00 16 40 3600.00 16 66
joint-15-30-5-30-YTGPP OOM OOM OOM 3600.00 16 +∞ 3600.00 16 116 3600.00 16 116
joint-15-30-5-30-cUZHK OOM OOM OOM 3600.00 16 +∞ 3600.00 16 116 3600.00 16 116
joint-15-30-5-30-dwnXW 3600.00 −∞ +∞ 3600.00 16 +∞ 3600.00 16 116 3600.00 16 116
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Table 5.5: Results for methods RLT, IP, FEAS and DISTMAX, when applied to random distances instances. Column run time is the
CPU time in seconds and columns lb and ub are the reported lower and upper bounds.

RLT IP FEAS DISTMAX
name run time lb ub run time lb ub run time lb ub run time lb ub
drand-10-75-FrySA 3600.00 5 8 343.17 8 8 117.98 8 8 59.85 8 8
drand-10-75-LMchp 3600.00 5 8 3.70 7 7 2.33 7 7 12.17 7 7
drand-10-75-duABx 3600.00 5 10 86.04 8 8 83.97 8 8 33.39 8 8
drand-10-110-IAeNk 3600.00 5 9 140.80 8 8 125.21 8 8 88.11 8 8
drand-10-110-RVUNe 3600.00 5 9 1185.35 8 8 98 8 8 373.82 8 8
drand-10-110-xGWpl 3600.00 4 10 740.38 8 8 552.61 8 8 92.63 8 8
drand-10-200-NRczF 3600.00 5 9 63.01 7 7 17.14 7 7 30.19 7 7
drand-10-200-RADUL 3600.00 5 9 26.20 7 7 4.15 7 7 30.66 7 7
drand-10-200-uJUJU 3600.00 5 10 135.09 8 8 103.51 8 8 100.20 8 8
drand-50-75-GrPYu 3600.00 11 23 3600.00 11 47 3599.99 11 20 3600.00 11 20
drand-50-75-MQpCM 3600.00 1 +∞ 3600.00 11 37 3600.00 11 20 3600.00 11 20
drand-50-75-kDuRR 3600.00 11 24 3600.00 11 31 3600.00 11 20 3600.00 11 31
drand-50-110-qwGbF 3600.00 1 +∞ 3600.00 11 48 3599.85 11 31 3600.00 11 31
drand-50-110-rzTGD 3600.00 −∞ +∞ 3600.00 11 51 3600.00 11 31 3599.84 11 20
drand-50-110-zeXut 3600.00 1 +∞ 3600.00 11 23 3599.82 11 20 3599.91 11 31
drand-50-200-GDWds 3600.00 −∞ +∞ 3600.00 11 46 3600.00 11 31 3600.00 11 31
drand-50-200-oIURA 3600.00 −∞ -1 3600.00 11 51 3600.00 11 31 3600.00 11 31
drand-112-75-HKvAw 3600.00 −∞ 32 3600.00 16 +∞ 1452 16 27 3600.00 16 39
drand-112-75-mnjBD - - - 3600.00 16 +∞ 3060 16 39 3600.00 16 39
drand-112-110-bBfWZ 3600.00 −∞ +∞ 3600.00 16 +∞ 3600.00 16 64 3600.00 16 64
drand-112-110-qiBfT 3600.00 −∞ +∞ 3600.00 16 +∞ 3600.00 16 113 3600.00 16 39
drand-112-110-zMxaB 3600.00 −∞ 40 3600.00 16 +∞ 3600.00 16 64 3600.00 16 64
drand-112-200-GOsUT OOM OOM OOM 3600.00 16 +∞ 3600.00 16 113 3600.00 16 113
drand-112-200-WdgfA OOM OOM OOM 3600.00 16 +∞ 3600.00 16 113 3600.00 16 113
drand-112-200-zzVSk OOM OOM OOM - - - 3600.00 16 64 - - -
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Conclusions and Future Works

In this thesis, we have proposed new mathematical programming formu-

lations for the min distance superset problem. The first was a quadratically

constrained 0 − 1 program (3-2) and the second an integer program (4-8).

For the first, it was shown how to apply the pruning technique for quadratic

unconstrained programs, proposed in (Fleischman, 2010), via a lagrangian re-

laxation. Unfortunately, the pruning technique did not contribute to reduce

the size of the problems via variable fixing, showing poor experimental perfor-

mance when dealing with a variety of MDSP instances. For the second model,

two solution approaches involving binary searches on the number of points in

a solution were introduced. These proved to be successful, showing improved

results when compared to the integer and reformulation-relinearization of que

quadratically constrained 0− 1 models.

Future works include:

– Studying the approximability of the MDSP. Such a result may exist, as

Cieliebak has proven it for a similar problem (Cieliebak et al., 2003).

– Study the symmetry in MDSP solutions. Symmetry breaking constraints

may improve the efficiency of all models considered in this thesis, by

significantly reducing the search space.

– Improve Algorithm 2 or find a better substitute. Reducing the number

of variables in the quadratic 0 − 1 model will drastically improve its

efficiency, specially if it can be reduced to a polynomial size on the input.

– Apply and study branch and bound techniques for Model (4-8).

– Develop heuristics which can improve the trivial lower bounds for a

given MDSP instance. This should improve the efficiency of all presented

models, specially the binary search based methods.
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